EXAMPLE
EJEMPLO
When tanh
4x
is 0.88,
Cuando
tanh
4x
es 0.88,
x~ tanh~'O.88 ~0.343941925
sinh -'2xcosh-'l.
5~1.
389388947
OPERATION
OPERACION
2~l§Jo;;jEl
185~B~a
READ·OUT
LECTURA
I
0.343941925
I
1.4436355
1.389388947
16.98243TI
4-4 Common
&
Naturallogarithms!Exponen-
tiations (Antilogarithms, Exponentials,
Powers and Roots)
Input range:
logx/lnx:
o<x
<
1
X loulo
1(}T :IXI < 100
ex :
-227";:
x .,;:
230
xY:O<x
<
1
x
10
'0
°.1)'1<
1
x
10
100
x~
(
~
:
0
<
x
<
1
X
10
100
,
!Yj
<
1 x 10
100 •
J'~O
EXAMPLE
EJEMPLO
log 1.231-log,01.23)=0.089905111
•
In 901=loge 90)=4.4998097
log
456·Hn456~0.4342944
75
to
1.23= 16. 98243 7
e
4
·5-90.017131
to
0
.4
i5·
e
·3~2.
76082174
5.6'·3= 52. 581438
,
12371~~123 )~1.9886478
178-231 12=1.3051119Xl0
21
3'2
~
e'
0=553467.466
4-4 Logaritmos Comunes y Naturales!
Eponenciaciones (Antilogaritmos,
Exponenciales, Potencias y Raicesl.
Franja de entrada:
logx/lnx:
O<x
<
1 x 10'00
1(}T: IXI<100
ex :
-227";:
x .,;:
230
xy:
0
<x
<
1
x
10,oo.[yj< 1 x 10
100
x"5-
(-(IX) :
0
<
x
<
1
X
1Q
IlIil
•
Iyl <
1
x
10
100
•
y~O
OPERATION
READ·OUT
OPERACION
LECTURA
18231§J
I
0.089905111
•
90,,,"
4.499809TI
456,.,'''!D'''j·,"~S 10.434294475]
1823~~
I
4:~15g,"j
1_",,90. 0 1 7131
l'-J41"'1@D5E13@g,,"JS
0:
76082174
51'.J6:!\283S
L
52.581438 ]
123glmS
I
j~8864
78
J
1ll'''178a23E-ill
i
.i\121'i'JS 11.3051119 211
3\!j12D 1O""'l£'JS
553467.466
log sin4<Y +Iog cos35'
~-O.
2 78567983
(The antilogarithm . . . . 0.52654079)
(EI antilogaritmo
i
• • • • •
0.52654079)
"DEG"
40J";;I~'~D35;~~~?1!~EI
~!fV)I~
-0.278567983
0.52654079
1
1
,
15 5 +25
6
+35 7 =5.090557
15""'llu5D25g06D351""liiJ7S [---'5.090557
I