Sartorius YDK03 Instrucciones De Funcionamiento página 21

Kit para la determinación de la densidad
Tabla de contenido

Publicidad

Idiomas disponibles
  • ES

Idiomas disponibles

Corrections When Used with Entris
Models
You must allow for the following when
determining the specific gravity
of solids:
– the air buoyancy that affects the
sample weighed in air
where ρ (a) = 0�0012 g/cm
of air under standard conditions
(temperature 20°C, pressure 101�325 kPa);
which results in the following:
W (a) · [r (fl) – ρ (a)]
ρ =
W (a) – W (fl)
– the immersion of the wires of
the sample holder or sieve
When using this specific gravity determi-
nation kit, you must multiply the buoyancy
G = [W (a) – W (fl)] by the correction factor
(corr)�
Advanced formula:
W (a) · [ρ (fl) – ρ (a)]
ρ =
[W (a) – W (fl)] · Corr
This factor allows for the buoyancy
of the wires which are submerged deeper
when the sample is in the sample holder�
3
= density
+ ρ (a)
+ ρ (a)
How this allowance factor is derived:
The buoyancy caused by the submerged
wires depends on the height "h" by which
the liquid rises when the sample is
immersed�
Here, the sample volume V (pr) corresponds
to the liquid volume V (fl)� The sample
volume is determined by measuring the
buoyancy� Hence, it is:
V (pr) = V (fl)
or
W (a) – W (fl)
π · h · D
=
ρ (fl)
4 · [W (a) – W (fl)]
Therefore, h =
ρ (fl) · π · D
The buoyancy "A" caused by the immersed
wires is:
π – d
2
A = 2 ·
· h · ρ (fl)
4
When "h" is used:
2
2 · π · d
· 4 · [W (a) – W (fl)] · ρ (fl)
ρ =
4 · ρ (fl) · π · D
2
d
A = 2 ·
· [W (a) – W (fl)]
D
2
2
4
2
2
21

Publicidad

Tabla de contenido
loading

Tabla de contenido