ESAB EPP-400 Manual De Instrucciones
ESAB EPP-400 Manual De Instrucciones

ESAB EPP-400 Manual De Instrucciones

Fuente de alimentación para aplicaciones de plasma
Ocultar thumbs Ver también para EPP-400:
Tabla de contenido

Publicidad

Idiomas disponibles

Idiomas disponibles

Enlaces rápidos

EPP-400
Fuente de alimentación para aplicaciones de plasma
Manual de instrucciones (ES)
0558006939
08/2010

Publicidad

Tabla de contenido
loading

Resumen de contenidos para ESAB EPP-400

  • Página 1 EPP-400 Fuente de alimentación para aplicaciones de plasma Manual de instrucciones (ES) 0558006939 08/2010...
  • Página 2: Responsabilidad Del Usuario

    Si usted no entiende completamente estas instrucciones, entre en contacto con a su distribuidor ESAB para información adicio- nal. Asegure leer las medidas de seguridad antes de instalar o de operar este equipo.
  • Página 3: Tabla De Contenido

    4.5 Curvas V-I de la EPP-400 ........
  • Página 5: Precauciones De Seguridad

    PRECAUCIONES DE SEGURIDAD Precauciones de seguridad Los usuarios de los equipos de corte y soldadura ESAB tienen la responsabilidad de asegurar que las personas que trabajan o están cerca del equipo sigan las normas de seguridad. Las precauciones de seguridad deben estar de acuerdo con equipos de corte y soldadura. Las recomendaciones abajo deben ser seguidas adicionalmente a las normas estándar.
  • Página 6 Proteja sus oídos. utilice protección auricular. Avise las personas al rededor sobre el riesgo. AVERÍAS – Llame a ESAB en caso de una avería con el equipo. LEER Y ENTENDER EL MANUAL ANTES DE INSTALAR U OPERAR EL EQUIPO. PROTEJA A USTED Y LOS OTROS! Este producto está...
  • Página 7: Descripción

    La fuente de alimentación EPP ha sido diseñada para realizar operaciones de marcado y de corte mecanizado por plasma a gran velocidad. También puede utilizarse junto con otros productos de la marca ESAB, como por ejemplo los sopletes PT-15, PT-19XLS, PT-600 y PT-36 y con el Smart Flow II, un sistema informatizado de conmu- tación y regulación de gas.
  • Página 8: Dimensiones Y Peso

    SECCIÓN 2 DESCRIPCIÓN Dimensiones y peso 114.3 cm 94.6 cm 45.00” 37.25” 102.2 cm 40.25” Peso = 825 kg.
  • Página 9: Instalación

    Prevea la posibilidad de tener que retirar los paneles superior y laterales para realizar tareas de mante- nimiento, limpieza y revisión. • Sitúe la EPP-400 relativamente próxima a una alimentación de corriente eléctrica debidamente instalada. • Mantenga libre de obstáculos la zona debajo de la fuente de alimentación para permitir la circulación del aire de refrigeración.
  • Página 10: Conexión De La Potencia De Entrada

    PARA APAGAR LA CORRIENTE 3.4.1 Potencia de entrada La EPP-400 es una unidad trifásica. La potencia de entrada debe proceder de un desconectador de línea principal que contenga fusibles o cortacircuitos de conformidad con la normativa local o estatal vigente.
  • Página 11: Conductores De Entrada

    Los conductores de entrada deben terminar con terminales de lengüeta NOTA redonda. Los conductores de entrada deben terminar con terminales de lengüeta redonda para 12,7 mm antes de acoplarse a la EPP-400. 3.4.3 Procedimiento de conexión de entrada 1. Retire el panel lateral izquierdo de la EPP-400 2.
  • Página 12: Conexiones De Salida

    SECCIÓN 3 INSTALACIÓN ¡LA CORRIENTE ELÉCTRICA PUEDE MATAR! LAS TERMINALES CON LENGÜETA REDONDA DEBEN TENER ADVERTENCIA ESPACIO ENTRE EL PANEL LATERAL Y EL TRANSFORMADOR. ESTE HUECO DEBE SER SUFICIENTE PARA EVITAR UNA POSIBLE FORMACIÓN DE ARCO. ASEGÚRESE DE QUE LOS CABLES NO INTERFIEREN EN LA ROTACIÓN DEL VENTILADOR.
  • Página 13: Procedimiento De Conexión De Salida

    4. Vuelva a colocar el panel previamente retirado en el primer paso. panel de acceso 3.6 Instalación en paralelo Es posible conectar juntas dos fuentes de alimentación EPP-400 en paralelo para ampliar el rango de tensiones de salida. La corriente mínima de salida de la fuente de alimentación instalada en paralelo supera la cantidad recomendada al realizar cortes por debajo de 100A.
  • Página 14: Conexiones Para Dos Epp-400 En Paralelo

    [tensión de salida (amperios)] = [tensión de referencia] x [100] Conexiones para la instalación en paralelo de dos fuentes de alimentación EPP-400 con ambas fuentes de alimentación en funcionamiento.
  • Página 15 SECCIÓN 3 INSTALACIÓN La EPP-400 no tiene un interruptor de ENCENDIDO / APAGADO (ON/OFF). La corriente principal se controla mediante el desconectador de línea (pared). NO PONGA EN FUNCIONAMIENTO LA EPP-400 CUANDO NO TENGA COLOCADAS LAS TAPAS PROTECTORAS. LOS COMPO- ADVERTENCIA NENTES QUE SOPORTAN ALTAS TENSIONES ESTÁN EXPUESTOS...
  • Página 16: Marcado Con Dos Epp-400 En Paralelo

    3.6.2 Marcado con dos EPP-400 en paralelo Dos unidades EPP-400, conectadas en paralelo puede utilizarse para marcar hasta a 24A y para cortar desde 100A a 800A. Cabe la posibilidad de introducir dos sencillas modificaciones en la fuente de alimentación complementaria para posi- bilitar realizar marcas a 12A.
  • Página 17: Cables De Interfaz Cnc Con Conectores De Fuente De Potencia A Juego En Ambos Extremos

    SECCIÓN 3 INSTALACIÓN 3.7.1 Cables de interfaz CNC con conector de fuente de potencia a juego e interfaz CNC sin terminar GRN/YEL VISTA DEL CABLEADO RED #4 3.7.2 Cables de interfaz CNC con conectores de fuente de potencia a juego en ambos extremos GRN/YEL VISTA DEL VISTA DEL...
  • Página 18 SECCIÓN 3 INSTALACIÓN 3.7.3 Cables de interfaz del refrigerador de agua con conectores de fuente de potencia a juego en ambos extremos VISTA DEL CABLEADO VISTA DEL CABLEADO LONGITUD...
  • Página 19: Funcionamiento

    SECCIÓN 4 FUNCIONAMIENTO 4.1 Descripción del circuito del diagrama de bloques...
  • Página 20 4.1 Descripción del circuito del diagrama de bloques (conti.) El circuito de corriente utilizado en la EPP-400 suele conocerse como el Convertidor de transferencia inversa o como un Relé modulador. Los interruptores electrónicos de alta velocidad se encienden y apagan cientos de veces por segundo para generar impulsos de potencia de salida.
  • Página 21 4.1 Descripción del circuito del diagrama de bloques (conti.) El Diagrama de bloques de la EPP-400 (tras la subsección 6.4.4) muestra los principales elementos funcionales de la fuente de alimentación. T1, el Transformador principal, que proporciona aislamiento de la línea de tensión primaria así como también la tensión adecuada para el contacto *375 CC.
  • Página 22: Panel De Control

    5 segundos y luego volver a encenderla. F - Dial de corriente (potenciómetro) El dial de la EPP-400 que se muestra. La EPP-400 dispone de un rango que va de los 12 a los 400A. Únicamente se utiliza en el modo panel.
  • Página 23 BAJO del interruptor. Esto puede variar dependiendo del gas, del material y del soplete empleados. Los ajustes alto / bajo se especifican en los datos de corte incluidos en el manual del soplete. Una vez que la EPP-400 está configurada...
  • Página 24 SECCIÓN 4 FUNCIONAMIENTO 4.2 Panel de control (conti.) J - Contadores Muestra la tensión y el amperaje mientras se realiza el corte. Se puede activar el amperímetro mientras no se realizan cortes para ver un cálculo aproximado de la tensión de corte antes de iniciarlo. K - Interruptor reales / predeterminados El interruptor de palanca con resorte de retorno AMPERIOS REALES (ACTUAL AMPS) / AMPERIOS PREDETERMINADOS (PRE- SET AMPS), S42, se coloca por defecto en la posición REALES (ARRIBA) En la posición REALES, el AMPERÍMETRO DE SALIDA...
  • Página 25: Modos De Funcionamiento: Modo De Corte Y Marcado

    4.2.1 Modos de funcionamiento: Modo de corte y marcado La EPP-400 trabaja en el Modo de corte con una única gama de tensiones de salida regulable continuamente que va desde los 50 a los 400A utilizando el Potenciómetro de corriente, situado en el panel frontal, o una señal de referencia de corriente remota que entra en el conector, J1.
  • Página 26: Secuencia De Funcionamiento

    Operation quence of Operation Cierre el interruptor de línea (pared) para hacerle llegar corriente. (La EPP-400 no tiene un interruptor de encendido / apagado) El testigo luminoso de corriente principal se iluminará y la luz de fallo parpadeará y luego se apagará.
  • Página 27: Ajustes De Puesta En Marcha Del Arco

    Cabe la posibilidad de ajustar el tiempo necesario para alcanzar la corriente máxima y así conseguir un arranque suave. Esta función utiliza una menor corriente para arrancar el aparato y posteriormente le administra una corriente creciente hasta alcanzar la capacidad máxima. La EPP-400 viene habilitada de fábrica para un arranque suave. Los ajustes predeterminados son los siguientes: Corriente máxima de arranque.
  • Página 28: Habilitar / Deshabilitar Condiciones De Puesta En Marcha Del Arco Voltaico

    SECCIÓN 4 FUNCIONAMIENTO sECtIon 4 opErAtIon 4.4.1 Habilitar / deshabilitar condiciones de puesta en marcha del arco voltaico 4.4.1 Enable/Disable Arc Initiation Conditions Ajustes predeterminados de fábrica Factory default setting shown. 1. Quite el panel del acceso situado en la esquina superior derecha del panel frontal. Asegúrese de volver a poner este 1. Remove access panel on the upper-right corner of the front panel. Be sure to replace this panel after adjustments have panel una vez introducidas las modificaciones y ajustes.
  • Página 29: Mandos De Puesta En Marcha Del Arco

    SECCIÓN 4 FUNCIONAMIENTO 4.4.4 Mandos de puesta en marcha del arco Potenciómetro de la Sincronizador de rampa de inicio corriente de arranque 4.4.5 Corriente de inicio y sincronizador de rampa de inicio Relación entre el ajuste del potenciómetro y Corriente de inicio (%) de la corriente de inicio Regule el potenciómetro situado en la parte superior izquierda del centro de la PCB1.
  • Página 30: Curvas V-I De La Epp-400

    SECCIÓN 4 FUNCIONAMIENTO 4.5.1 Curvas V-I de la EPP-400 para potencias de entrada de 460V y 575V, 60 Hz Tensión de salida (voltios) OUTPUT VOLTAGE (Volts) = 0.240V Min. Marking Current VREF = 0.240 MIN MARK CURRENT RATING Min. Cutting Current MIN CUT CURRENT RATING VREF = 1.000...
  • Página 31 SECCIÓN 4 FUNCIONAMIENTO 4.5.2 Curvas V-I de la EPP-400 para potencias de entrada de 400V, 60 Hz Tensión de salida (voltios) OUTPUT VOLTAGE (Volts) VREF = 0.240 = 0.240V Min. Marking Current MIN MARK CURRENT RATING VREF = 1.000 MIN CUT CURRENT RATING = 1.000V...
  • Página 32 SECCIÓN 4 FUNCIONAMIENTO...
  • Página 33: Mantenimiento

    section 5 maintenance 5.1 General electric shock can kill! warninG shut off power at the line (wall) disconnect before at- temptinG any maintenance. eye hazard when usinG compressed air to clean. warninG • Wear approved eye protection with side shields when cleaning the power source.
  • Página 34: Lubricación

    5 maintenance air restrictions may cause epp-400 to over heat. thermal switches may be activated causing interruption of func- caution tion. do not use air filters on this unit. keep air passages clear of dust and other obstructions. 5.3 lubrication •...
  • Página 35: Localización Y Resolución De Problemas

    section 6 troubleshootinG 6.1 General electric shock can kill! warninG do not permit untrained persons to inspect or repair this equipment. electrical work must be performed by an expe- rienced electrician. stop work immediately if power source does not work properly. caution have only trained personnel investigate the cause.
  • Página 36 section 6 troubleshootinG Fault Indicator (Front Panel) Illuminates when there are abnormalities in the cutting process or when the input voltage falls ±10% outside the normal value. Momentary illumination is normal. If continuously lit, check LEDs 3, 4, 5, 7, and 8 on PCB1 for further diagnosis. LED 3 – (amber) Bus Ripple Fault - Momentarily illuminates at the beginning of each cut. Continuously lit during single-phasing or imbalanced line-to-line voltages of the three phase input line (Excessive Ripple). Power Source is shut down. LED 4 – (amber) High Bus Fault – Illuminates when input line voltage is too high for proper operation (approximately 20% above nominal line voltage rating). Power source is shut down. LED 5 – (amber) Low Bus Fault – Illuminates when input line voltage is approximately 20% below nominal line voltage rating. Power Source is shut down. LED 7 – (amber) Arc Voltage Saturation Fault – Illuminates when the cutting arc voltage is too high and cutting current drops below preset level. LED will extinguish after voltage decreases and current rises. LED 8 – (amber) Arc V oltage Cutoff Fault – Illuminates when arc voltage increases over the preset value. PS is shut down.
  • Página 37 section 6 troubleshootinG Power Reset Fault Indicator (on front panel) Illuminates when a serious fault is detected. Input power must be disconnected for a least 5 seconds to clear this fault. Check PCB1 Red LEDs 6, 9, 10, 11, 12, and 13 if this fault is illuminated for further diagnosis. LED 6 – (red) Right Overcurrent Fault – Illuminates when the current out of the right side chopper is too high (300 amps). This current is measured by the right-side hall sensor. The power source is shut down. LED 9 – (red) Left Overcurrent Fault – Illuminates when the current from the left side chopper is too high (300 amps). Measured by the left hall sensor. Power source is shut down. LED 10 _ (red) Left IGBT Unsaturated Fault – Illuminates when left IGBT is not fully conducting. PS (PS) is shut down. LED 11 – (red) Right IGBT Unsaturated Fault – Illuminates when right IGBT is not fully conducting. Power Source (PS) is shut down. LED 12 – (red) Left -(neg) 12V Bias Supply Fault – Illuminates when negative 12 V bias supply to the left side IGBT gate drive circuit (located on PWM-drive board PCB2) is missing. PS is shut down. LED 13 – (red) Right –(neg) 12V Bias Supply Fault - Illuminates when negative 12 V bias supply to the right side IGBT gate drive circuit (located on PWM drive board PCB3) is missing. PS is shut down.
  • Página 38: Fault Isolation

    section 6 troubleshootinG 6.3 fault isolation Many of the most common problems are listed by symptom. 6.3.1 Fans not working 6.3.2 Power not on 6.3.3 Fault Light Illumination 6.3.4 Torch won’t fire 6.3.5 Fusses Blown F1 and F2 6.3.6 Intermittent, Interrupted or Partial Operation 6.3.1 fans not working problem possible cause action This is normal when not cutting. All 4 fans do not run Fans run only when “Contactor On” None signal is received. Broken or disconnected wire in fan Repair wire.
  • Página 39 section 6 troubleshootinG 6.3.3 fault light illumination problem possible cause action Normal condition caused when ter- Fault light illuminates at the end of Reprogram cutting process to minating t he a rc b y r unning t he t orch cut but goes off at the start of the ensure arc is terminated only by off the work or the arc being attached next. removing the “Contactor On” signal. to a part that falls away. Maintain phase voltage imbalance Imbalance of 3-phase input power of less than 5%. LED 3 – (amber) Bus Ripple Momentary loss of one phase of Restore and maintain input power input power within ±10% nominal...
  • Página 40 section 6 troubleshootinG problem possible cause action Cutting at over 275A with a faulty left side See faulty left or right side (left side output = 0) Right current transducer connector loose Secure connections or unplugged. PCB loose. LED 6 – (red) Right Over Cur- Loose or unplugged connector at right Secure connection rent PWM/Drive Printed circuit board. P2 at left of PWM / Drive PCB loose or un- Secure connection plugged. note: Check voltage between P7-6 and P7-7. A If operation at 275A or less is voltage in either polarity of greater than Replace right current transducer possible, then the LEFT side is 0.01 V indicates a faulty right current trans-...
  • Página 41 section 6 troubleshootinG problem possible cause action Shorted IGBT Replace the IGBTs Current pot set too high Lower the current setting Very high Output current ac- companied by either a left or Faulty left PWM / Drive PCB Replace left PWM / Drive PCB right over current (LED 6) High remote current signal Decrease remote current signal Faulty PCB1 Replace PCB1 P/N 0558038287 Black wire connecting IGBT (Q2) collector to P3 of the Secure connector left PWM / Drive PCB (PCB2) is disconnected. Shorted Freewheeling Diode(s) Replace freewheeling diode(s) Loose or unplugged P1 connector at the left PWM / LED 10 - (red) Left IGBT Un- Secure P1 Drive PCB saturated Loose or unplugged P10 connector at PCB1 Secure P10 Faulty PCB1 Replace PCB1 P/N 0558038287 Faulty left PWM / Drive PCB Replace PCB2 P/N 0558038308 Black wire connecting IGBT (Q5) collector to P3 of the Secure connector right PWM / Drive PCB (PCB3) is disconnected. Shorted Freewheeling Diode(s) Replace freewheeling diode(s) Loose or unplugged P1 connector at the left PWM / LED 11 - (red) Right IGBT...
  • Página 42 section 6 troubleshootinG problem possible cause action Loose or unplugged P1 connector at Secure P1 connector the left PWM / Drive PCB Loose or unplugged P10 connector LED 12 – (red) Left –12V Missing Secure P10 connector at PCB1 Replace left PWM / Drive PCB P/N Faulty left PWM / Drive PCB 0558038308 Loose or unplugged P1 connector at Secure P1 connector the right PWM / Drive PCB Loose or unplugged P11 connector LED 12 – (red) Right –12V Missing Secure P11 connector at PCB1 Replace right PWM / Drive PCB P/N Faulty right PWM / Drive PCB 0558038308 Shorted IGBT...
  • Página 43 section 6 troubleshootinG 6.3.4 torch will not fire problem possible cause action Remote control removes the start signal when the main arc transfers to the work. Place Panel/Remote switch in “Panel” position Panel/Remote switch in “Remote” with no remote control of the current Main Arc Transfers to the work with a Check f or c urrent r eference s ignal a t T B1- short “...
  • Página 44 section 6 troubleshootinG 6.3.5 fuses f1 and f2 blown problem possible cause action Process controller must allow at least Process controller ignites pilot arc too 300MS to lapse between the applica- soon after providing the “Contactor tion of the “Contactor On” signal and On” signal the ignition of the pilot arc. Fix process controller logic and replace diodes. Faulty negative (Electrode) output cable Repair cable shorting to earth ground.
  • Página 45 section 6 troubleshootinG problem possible cause action Power source is OK. Trouble shoot pro- “Contactor On” signal is removed from unit. cess controller. Restore and maintain input voltage Momentary loss of primary input power. within ±10% of nominal. Remove control PCB (PCB1) access panel Faulty condition, indicated by illumination to determine the fault causing the shut- of the fault lamp. down. Refer to fault light illumination Power Supply turns off prema- section. turely in the middle of the cut. Remove control PCB (PCB1) access panel Faulty c ondition, i ndicated b y t he i llumination to determine the fault causing the shut- of the power reset fault lamp.
  • Página 46: Pruebas Y Sustitución De Componentes

    6 troubleshootinG 6.4 testing and replacing components • Replace a PC board only when a problem is isolated to that board. • Always disconnect power before removing or installing a PC board. • Do not grasp or pull on board components. notice • Always place a removed board on a static free surface. • If a PC board is found to be a problem, check with your ESAB distribu- tor for a replacement. Provide the distributor with the part number of the board as well as the serial number of the power source. • Do not attempt to repair the board yourself. Warranty will be voided if repaired by the customer or an unauthorized repair shop. power semiconductor components Categories of power semiconductors include; • Power Rectifiers • Modules containing the free wheeling diodes and IGBTs...
  • Página 47 section 6 troubleshootinG 6.4.1 power rectifiers Power Rectifiers – Procedure to access behind the front panel Remove top cover and side panels Locate and disconnect plug in rear of ammeter (at- tached tone red and one black wire) Remove pilot arc switch Disconnect voltmeter Disconnect orange and yellow wires from relay K4. Remove two bolts holding the left side of the front panel to the base. Remove three bolts holding across the center base of the front panel. These are accessed from under- neath. Remove one of the bolts holding the right side of the front panel to the base. Loosen the second bolt. Of these two bolts, remove the bolt on the left and loosen the bold on the right. Swing the front panel out to gain access to power rectifier components. Power Rectifiers located behind the front panel. troubleshooting procedures –negative plate Location of Neg. Plate 1. Visually inspect fuses F8 and F9. Replace if they show signs of being blown or melted. Inspect diodes. If ruptured or burned, replace all diodes on the NEG Plate. If diodes...
  • Página 48 section 6 troubleshootinG NEG Plate Diode Rectifier 1. Check ohms between NEG Plate and BR “ A” Bus. A reading of 2 ohms or less indicates one or more shorted diodes. Replace all Diodes on NEG Plate. 2. If fuses F8 and/or F9 were open in the first step, make two more ohmmeter readings. A. Measure resistance between the NEG Plate and BR “B” bus. Electrode Plate POS Plate B. Measure between NEG Plate and BR “C” bus. If resistance is 2 ohms or less in either case, replace all the diodes on the NEG Plate. troubleshooting pos plate 1. Check ohms between POS Plate and BR “ A” Bus. A reading Location of Pos. Plate of 2 ohms or less indicates one or more shorted diodes.
  • Página 49 section 6 troubleshootinG 6.4.2 iGbt / freewheeling diode (fwd) replacement the emitter and the gate of each affected iGbt must be jum- caution pered together to prevent electrostatic damage. each power source is supplied with six jumper plugs that mate to the iGbt Gate / emitter plug.
  • Página 50 section 6 troubleshootinG replacement: A. Thoroughly clean any thermal compound from the heat sink and the modules. Any foreign material trapped between the module and heat sink, other than an appropriate thermal interface, can cause module damage due to over heat- ing. B. Inspect the thermal (interface) pad, P/N 951833, for damage. A crease or deformity can prevent the module from seat- ing properly, impeding the heat transfer from the module to the heat sink. The result can be module damage due to over heating. If a thermal pad is not available, a heat sink compound such as Dow Corning® 340 Heat Sink Compound may be used. It’s a good idea to mount all paralleled modules located on the same heat sink using the same thermal interface. Different interfaces can cause the modules to operate at different temperatures resulting in un-equal current sharing. The imbal- ance can shorten module life. C. Place a thermal pad, and an IGBT module on the heat sink. Carefully align the holes in the thermal pad with the heat- sink and module holes. If heat sink compound is used in place of a thermal pad, apply a thin coat of even thickness to the metal bottom of the module. A thickness of 0.002” – 0.003” (0.050mm – 0.075mm) is optimum. Too much com- pound impedes heat transfer from the module to the heat sink resulting in short module life due to over heating. D. Insert the four M6 mounting bolts, but do not tighten. Leave them loose a few turns. Be certain that the threads from the mounting bolts do not bend the edges of the thermal pad clearance holes. A bent thermal pad can prevent the module from seating properly, impeding the heat transfer from the module to the heat sink. The result can be module damage due to over heating. E. Partially tighten the four mounting bolts a little more than finger tight in the order: A-B-C-D. See figure below. F. Fully tighten, in the same order above, to a torque of 35 – 44 in-lbs (4.0 – 5.0 N-M). See figure below. G. Install the bus plates and bus bars. Be careful that the sheets of insulation separating the bus plates are still in their original positions. It’s a good idea to tighten the mounting hardware only after getting it all started. Torque the M6 module terminal hardware to 35 – 44 in-lbs (4.0 – 5.0 N-M). H. Remove the jumper plugs from the module gate lead plugs, and plug into the appropriate plugs from the PWM/Gate Drive PC Board. See Caution below. Replace the top panel. the module gate plugs must be plugged into the pwm/Gate caution drive pc board whenever the power source is in operation.
  • Página 51 section 6 troubleshootinG 6.4.3 power shunt installation instability or oscillation in cutting current can be caused by im- caution proper dressing of shunt pick-up leads. poor torch consumable life will be the result. There are two cables that attach to the shunt pick-up points: a two conductor cable drives the ammeter a three conductor which provides the current feedback signal to PCB1 (control PCB). Dressing of the 2 conductor cable is not critical. The following is the dressing procedure for the 3 conductor cable. • The breakout point should be physically at the middle of the shunt. The breakout point is the place where the conductors exit from the outer insulation jacket.
  • Página 52: Interfaz De Circuito De Control Que Utiliza Los Conectores J1 Y J6

    2. Compare the power source voltmeter reading to the calibrated meter reading. Readings should match within ±0.75%. Ammeter 1. External to the power source, connect a precision shunt in series with the work lead(s). The best shunt is one with a value of 100 micro-ohms (50mV / 500A or 100mV / 1000A) and a calibrated tolerance of 0.25%. 2. Use a calibrated 4 ½ digit meter to measure the output of the shunt. The amperage indicated with the external shunt and meter should match power source ammeter to within 0.75%. 6.5 control circuit interface using J1 and J6 connectors Interface to the EPP-400 control circuitry is made with connectors J1 and J6 on the front panel. J1 has 24 conductors, and J6 has 8. J1-P and J1-G provide access to the galvanically isolated transistor output signal indicating an “Arc On” condition. See Subsection 6.8, Arc Current Detector Circuits. J1-L and J1-J are the inputs for the remote Voltage Reference Signal that commands the EPP-400 output current Subsection 6.9, Current Control Pot & Remote Vref. J1-R and J1-Z supply 115V AC for remote controls. See Subsection 6.6, Auxiliary Main Contactor (K3) & Solid State Contactor Circuits and Subsection 6.10, Pilot Arc Hi/lo & Cut/mark Circuits. J1-E and J1-F are the input connections for the Emergency Stop function. For Emergency Stop to operate, the Jumper between TB8-18 and TB8-19 must be removed.
  • Página 53 section 6 troubleshootinG...
  • Página 54: Con Semiconductores

    section 6 troubleshootinG 6.6 auxiliary main contactor (k3) and solid state contactor circuits K3, activated by supplying a Contactor Signal, initiates and controls the operation of K2 (Starting Contactor) and K4 (Pilot Arc Contactor). K3 is called the Auxiliary Main Contactor because it must be activated before the Main Contactor (K1) power-up sequence can occur. The Contactor Signal is supplied through a remote contact connecting 115VAC from J1-R to J1-M. If K6-2 is closed (no fault) and the Emergency Stop loop is closed, K3 will activate. The closing of K3-3 activates K2, the Starting Contactor, and K4, the Pilot Arc Contactor, provided the power source is not over heated. See Subsection 6.7, Main Contactor (K1A, K1B and K1C) Activation Circuit for more information on the operation of K2. K4 is turned off when the Current Detector senses arc current and opens the contact connecting P2-5 to P2-6 on the Control PC Board. In addition to operating K3, the Contactor Signal also activates the Solid State Contactor. The Solid State Contactor is a logic and interlock circuit permitting the IGBT’s to conduct whenever the remote Contactor Signal is present. The 115V AC Contactor Signal is fed to TB1-9, TB7-8, and resistors R45 and R45A. These resistors reduce the 115V to approximately 16V AC fed into the Control PC Board at P6-1 and P6-2. The Control PC Board sends a signal to both the Left and Right PWM /...
  • Página 55: Circuito De Activación Del Contactor Principal (K1A, K1B Y K1C)

    section 6 troubleshootinG 6.7 main contactor (k1a, k1b and k1c) activation circuit A power-up sequence takes place before the Main Contactor (K1) activates. K1 is actually three separate contactors – one for each primary input phase. Thus, K1A, K1B, and K1C switch phases A, B, and C respectively to the Main Transformer, T1. The power-up sequence begins with a remote Contactor Signal activating K3. Refer to the description entitled, “Auxiliary Main Contactor (K3) & Solid State Contactor Circuits” for more information. K3 activates K2 closing the three contacts of K2. K2 bypasses K1 contacts providing primary input power to the Main Transformer, T1. This current is limited by three one Ohm resistors, R1, R2, and R3. The resistors eliminate the high surge currents typical of the turn-on inrush transients associated with large transformers. The high current surge of charging the Bus Capacitor Bank is also eliminated by initially powering the Main Transformer through K2 and the resistors. The discharged Bus Capacitor Bank initially prevents the output of the Main transformer from reaching its normal value. As the Bus Capacitor Bank charges, the Main Transformer output voltage rises and becomes high enough for K1A, K1B, and K1C to close. Once the K1’s are closed, the contacts of the Starting Contactor, K2, are bypassed, and full primary line power is supplied to the Main Transformer. Because the starting sequence takes time, it is important at least 300 mS lapse between applying the Contactor Signal and applying load to the power source. Applying load too soon will prevent K1 from closing, and fuses F1 and F2 will open.
  • Página 56: Circuitos Del Detector De Corriente Del Arco

    6 troubleshootinG 6.8 arc current detector circuits There are three Arc Current Detector circuits in the EPP-400. One is used internally to control the Pilot Arc Contactor, K4. The other two are available for remote use. A galvanically isolated transistor Current Detector Output is accessible at J1-G (-) and J1-P (+). J1 is the 24 conductor con- nector on the EPP-400 front panel. The transistor is best suited for switching small relays or low current logic signals like those utilized by PLC’s (Programmable Logic Controllers). The transistor can withstand a maximum peak voltage of 150V. It can switch a maximum of 50 mA. The transistor turns on whenever the arc current through the Work Lead exceeds 5A. Pilot arcs not establishing main arcs will not turn on the transistor. A second current detector output is available at TB8-3 and TB8-4. This output is supplied by an isolated relay contact rated for 150V, 3 Amperes. This contact is closed when the primary input power to the EPP-400 is off. It opens whenever primary power is supplied to the power source, and it closes when main arc current is established. Like the transistor output, the relay contact closes whenever the arc current through the Work Lead exceeds 3A. Pilot arcs not establishing main arcs will not close the contact. J6-D J6-E J1-G J1-P...
  • Página 57: Vref Remoto Y Potenciómetro De Control De Corriente

    6 troubleshootinG 6.9 current control pot and remote vref A Reference Voltage, Vref, is used to command the output current of the EPP-400. Vref is a DC voltage that can come from either the Current Control Potentiometer on the front panel or from a remote source. In the “Panel” position, S2, the Panel / Remote switch selects the Current Control Potentiometer. In the “Remote” position, the Panel/Remote switch selects the Vref fed into J1-L (+) and J1-J (-). The EPP-400 Output Current, I (out), will follow Vref with the following relationship: I(out) = (50) x (Vref) The Control PC Board contains two inputs for Vref: High Speed; and Normal. When the negative of the Vref signal is fed into the High Speed input (P8-3), the EPP-400 will respond to a change in Vref within 10 mS. When the negative of the Vref signal is fed into the Low Speed input (P8-1), the EPP-400 will respond to a change in Vref within 50 mS. The slower response of the “Normal” input helps filter electrical noise sometimes encountered in industrial environments. (50) EPP-400:...
  • Página 58: Circuito De Marcado / Corte Hi / Lo Del Arco Piloto

    6 troubleshootinG 6.10 pilot arc hi / lo and cut / mark circuits A remote contact connecting 115V AC from J1-F to J1-L places the Pilot Arc in High by operating K8. Note, that for this func- tion to operate, the Pilot Arc Hi/Lo switch on the front panel must be in the “LO” position. The EPP-400 is placed in the Marking mode when a remote contact connecting 115V AC from J1-R to J1-C operates K11. In the Marking mode, a normally closed contact on K11 opens turning off K10. When K10 turns off, the Boost supply is discon- nected lowering the normal Cutting Mode 425V DC Open Circuit Voltage to 360V* DC for Marking. A normally open con- tact on K11 activates K12. K12 connects the I (min) resistors necessary for stabilizing the low currents required for marking. In the Cutting mode, the minimum stable output current is 50A, and in the marking mode, it’s 12A. * 310V for 400V, 50/60Hz model J1-D J1-S J1-C J1-Z J6-B J6-A...
  • Página 59: Replacement Parts

    7 replacement parts replacement parts General Always provide the serial number of the unit on which the parts will be used. The serial number is stamped on the unit serial number plate. ordering To ensure proper operation, it is recommended that only genuine ESAB parts and products be used with this equipment. The use of non-ESAB parts may void your warranty. Replacement parts may be ordered from your ESAB Distributor. Be sure to indicate any special shipping instructions when ordering replacement parts. Refer to the Communications Guide located on the back page of this manual for a list of customer service phone numbers. note Bill of material items that have blank part numbers are provided for customer information only. Hardware items should be available through local sources. NOTE: Schematics on 279.4mm x 431.8mm (11” x 17”) paper are included inside the back cover of this manual.
  • Página 60 section 7 replacement parts...
  • Página 61 section 7 replacement parts...
  • Página 62 section 7 replacement parts...
  • Página 63 section 7 replacement parts...
  • Página 64 section 7 replacement parts...
  • Página 65 7 replacement parts EPP-400 Only - 2 Places EPP-400 Only - 2 Places...
  • Página 66 section 7 replacement parts...
  • Página 67 section 7 replacement parts...
  • Página 68 section 7 replacement parts...
  • Página 69 section 7 replacement parts...
  • Página 70 section 7 replacement parts...
  • Página 71 section 7 replacement parts 35751Y 35752Y 0558006169...
  • Página 72 section 7 replacement parts 17280215 R10-11 RESISTOR 1.5K OHMS 100W R28-31 951198 FERRITE CORE...
  • Página 73 section 7 replacement parts...
  • Página 74 section 7 replacement parts...
  • Página 75 section 7 replacement parts...
  • Página 76 section 7 replacement parts 0558954035...
  • Página 77 section 7 replacement parts 3.62 W 4600610...
  • Página 78 notes...
  • Página 79: Revision History

    revision history 1. Original release - 11 / 2006. 2. Revision 08/2010 - Updated with new DOC form.
  • Página 80 ESAB Saldatura S.p.A. ESAB (Malaysia) Snd Bhd ESAB Ges.m.b.H Mesero (Mi) CONARCO Shah Alam Selangor Vienna-Liesing Tel: +39 02 97 96 81 Buenos Aires Tel: +60 3 5511 3615 Tel: +43 1 888 25 11 Fax: +39 02 97 28 91 81 Tel: +54 11 4 753 4039 Fax: +60 3 5512 3552 Fax: +43 1 888 25 11 85 Fax: +54 11 4 753 6313 the netherlands sinGapore belGium brazil ESAB Nederland B.V. ESAB Asia/Pacific Pte Ltd S.A. ESAB N.V. Utrecht ESAB S.A.

Este manual también es adecuado para:

Epp-600

Tabla de contenido