Fracciones
Las fracciones pueden expandirse y factorizarse utilizando las funciones
EXPAND y FACTOR, localizadas en el menú ALG (‚×). Por ejemplo:
EXPAND('(1+X)^3/((X-1)*(X+3))') = '(X^3+3*X^2+3*X+1)/(X^2+2*X-3)'
EXPAND('(X^2*(X+Y)/(2*X-X^2)^2') = '(X+Y)/(X^2-4*X+4)'
FACTOR('(3*X^3-2*X^2)/(X^2-5*X+6)') = 'X^2*(3*X-2)/((X-2)*(X-3))'
FACTOR('(X^3-9*X)/(X^2-5*X+6)' ) = 'X*(X+3)/(X-2)'
La función SIMP2
La función SIMP2, en el menú ARITHMETIC, utiliza como argumentos dos
números o dos polinomios, los cuales representan el numerador y el
denominador de una fracción racional, y produce, como resultados, el
numerador y denominador simplificados. Por ejemplo:
SIMP2('X^3-1','X^2-4*X+3') = { 'X^2+X+1','X-3'}
La función PROPFRAC
El función PROPFRAC convierte una función racional en una función "propia",
es decir, una parte entera sumada a una parte fraccional, si tal
descomposición es posible. Por ejemplo:
PROPFRAC('5/4') = '1+1/4'
PROPFRAC('(x^2+1)/x^2') = '1+1/x^2'
La función PARTFRAC
La función PARTFRAC descompone una fracción racional en fracciones
parciales que, al sumarse, producen la fracción original. Por ejemplo:
PARTFRAC('(2*X^6-14*X^5+29*X^4-37*X^3+41*X^2-16*X+5)/(X^5-
7*X^4+11*X^3-7*X^2+10*X)') =
'2*X+(1/2/(X-2)+5/(X-5)+1/2/X+X/(X^2+1))'
Página 5-11