HP 49g+ Guia Del Usuario página 211

Calculadora gráfica
Tabla de contenido

Publicidad

Nota: Recuerde que los números complejos en la calculadora están
representados como pares ordenados, con el primer número en el par siendo
la parte real, y el segundo número, la parte imaginaria. Por ejemplo, el
número (0.432,-0.389), un número complejo, será escrito normalmente como
0.432 - 0.389i, donde i es la unidad imaginaria, es decir, i
Nota: El teorema fundamental de la álgebra indica que hay n soluciones
para cualquier ecuación polinómica de orden n.
álgebra que indica que si una de las soluciones a una ecuación polinómica
con coeficientes reales es un número complejo, entonces el conjugado
complejo de ese número es también una solución. Es decir, las soluciones
complejas a una ecuación polinómica con coeficientes verdaderos se dan en
pares. Eso significa que las ecuaciones polinómicas con coeficientes reales
de orden impar tendrán por lo menos una solución real.
Generación de coeficientes de un polinomio dadas las raíces
Supóngase que se desean generar los coeficientes de un polinomio cuyas
raíces son los números [1, 5, -2, 4]. Para utilizar la calculadora con este
propósito, síganse las siguientes instrucciones:
‚Ϙ˜@@OK@@
˜„Ô1‚í5
‚í2\‚í 4@@OK@@
@SOLVE@
Presiónese ` para recuperar la pantalla normal.
mostrarán también en esa pantalla.
Presiónese la tecla ˜ para activar el editor de línea y poder ver el vector
de coeficientes en su totalidad.
2
= -1.
Existe otro teorema del
Seleccionar Solve poly...
Vector de raíces
Calcular coeficientes
Los coeficientes se
Página 6-8

Publicidad

Tabla de contenido
loading

Tabla de contenido